

Course content

- PART I.1: Medical Imaging Introduction
- · PART I.2: Medical Image Processing
- · PART I.3: medical Image Analysis
- PART II: Virtual Environments & Advanced Computer Graphics
- · PART III: Game Design

Index

- · Introduction to medical imaging
- X-Ray imaging
- · Computerized tomography imaging
- · Nuclear imaging
- Ultrasound imaging
- Magnetic resonance imaging

Material based on and images taken from the UPM master degree in biomedical engineering

Introduction

- · Medical imaging main objectives
 - Diagnosis: disease detection
 - Monitoring: disease development evaluation
 - Planning: correct procedure during surgery
- How are generated?
 - Capturing and converting the interaction between a type of radiation and human tissue
 - Clinic information is obtained from the observation of this recorded interaction

Medical imaging types

- · Anatomical vs functional imaging
- · Emission vs transmission imaging
- · Projection vs Tomographic imaging

Anatomical vs functional imaging

Anatomical

Distinguish between the different substances present in the organism: water, bone, soft tissues, ...

Functional

Discriminate different metabolism levels, measured depending on a certain biochemical activity.

Medical Imaging Modalities

- X-ray imaging
- · Computerized axial tomography imaging
- Nuclear imaging
- Ultrasound imaging
- Magnetic resonance imaging

X-ray imaging

- Image: provides a measure of the attenuation of X-rays when they go through biological tissue.
- Generation: projection of a X-ray beam through the body human on a receptor sensitive to this type of radiation.

X-ray imaging

· Problem of overlapping structures

The X-ray beam represents at each point all the attenuation of the structures it has crossed, in some cases the clinical area of interest can be hidden under overlapping structures.

· Contrast radiography

Administration of a radiopaque dye. This test allows to evaluate structures that are not clearly evident on conventional X-ray exams.

CT imaging

Image: same X-ray.

Generation: multiple reconstructed projections of a X-ray beam through the body human on a receptor sensitive to this type of radiation.

CT imaging

- Allows the visualization of superimposed structures and provides 3D information.
- Greater discrimination of the attenuation of the X-rays, increasing the range of tissue densities that can be visualized.

Nuclear imaging

- **Image:** measure of the location and concentration of a radioactive isotope.
- Generation: of a radioactive isotope along a traces is introduced into the human body, it attaches to the specific tracer target. Radiation is measured in a Gamma camera.

Ultrasound imaging

- Image: map of echo intensities, as a result of the interaction of ultrasound pulses with human tissue.
- Generation: emission and reception of multiple unidimensional ultrasonic beams.

Magnetic resonance imaging

- Image: three dimensional detailed anatomical images.
- Generation: MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body.

Conclusions

- The images are fundamental in medical practice and they have revolutionized medicine since the 20th century.
- Current and future medical imaging modalities and technologies allow better diagnosis, treatment and prevention of diseases.

Bibliography

- P. Suetens. Fundamentals of Medical Imaging. Cambridge University Press. 2009
- Jerry L. Prince, Jonathan Links, Medical Imaging Signals and Systems, Pearson Prentice Hall, 2013
- R. C. Gonzalez, R. E. Woods. Digital Image Processing. Pearson Education. 2008